

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1307

Zero Knowledge Proof for SNAP (Standar

Nasional OPEN API Pembayaran) in

Indonesia

Moehammad Ramadhoni1), Handri Santoso2)*
1,2)Universitas Pradita, Indonesia,

1)moehammad.ramadhoni@student.pradita.ac.id, 2)handri.santoso@pradita.ac.id,

Submitted : May 13, 2023 | Accepted : Jun 7, 2023 | Published : Jul 1, 2023

Abstract: SNAP (Standar Nasional OPEN API Pembayaran) is an

implementation of open banking for encouraging digital transformation in

the banking industry. SNAP was submitted by several sub-working groups

formed jointly by ASPI and the Bank of Indonesia. In the document

Pedoman Tata Kelola (Bank of Indonesia, n.d.), a customer data protection

mechanism exists between the bank, the owner of Open API, and the user

of Open API. However, there is no data protection process carried out by

consumers so third parties, that use the Open API of the bank, do not need

to know the customer's data. Based on the web3 with zero-knowledge

proofs protocol, users can store data and transmit only in encrypted form

which can only be opened by calculating the data with a pre-agreed smart

contract. Banks can work like a decentralized network on web3, where the

process of calculating proof and witness is carried out by the bank. Proof

and witness are calculated using a zero-knowledge proof protocol, making

duplicating difficult. For this reason, we propose a new architecture using

smart contracts between banks and customers using the ZK-SNARK

method using gnark library in the Golang programming language.

Therefore, there is no significant performance difference between using

ZK-SNARK and without ZK-SNARK in the API call process.

Keywords: data protection, gnark, SNAP, zero-knowledge proofs, ZK-

SNARK

INTRODUCTION

On 16 August 2021, Bank Indonesia verified a document regarding the use of an Open API for

payments in Indonesia named SNAP (Standar Nasional OPEN API Pembayaran). This document was

initiated by many parties who are members of a sub-working group called ASPI (Asosiasi Sistem

Pembayaran Indonesia). The document already contains a chapter on consumer data protection and

protection mechanisms in the event of a data leak.

In addition, there are Standar Data Spesifikasi Teknis SNAP (Bank of Indonesia, n.d.) and Standar

Teknis Keamanan (Bank of Indonesia, n.d.) documents that have been verified by Bank Indonesia and

ASPI which discuss technically how to secure data and the API calling process, such as using public

and private keys, using encoding authentication in each header, and the use of signatures in headers.

The document also contains the prerequisites needed so that banks and third parties can use the Open

https://doi.org/10.33395/sinkron.v8i3.12477
mailto:email@email.com
mailto:email@email.com

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1308

API, such as the availability of written policies, fulfillment of certification, and availability of tools to

detect fraud.

This is a commitment from ASPI members and the Bank of Indonesia to secure and protect

consumer data from irresponsible parties. In the future, it is hoped that other industries will participate

in creating standard-compliant Open APIs as well so that consumers have convenience in the digital

era without having to sacrifice data security.

However, consumers should be included in the data security process. Consumers should also be

aware that data security is a crucial part of the digital era, and will increase data security from these

consumers so that only banks and consumers know consumer data. Third parties do not need to

acknowledge user data, such as account numbers, user account names, and bank branches.

Therefore, we propose a payment system architecture using Zero Knowledge Proof (hereinafter

referred to as ZKP) using Cryptography Smart Contracts between consumers and related banks.

Consumers do not need to send personal data to third parties, such as account numbers, usernames,

and card numbers. Therefore, banks still can verify consumers using proof that sent by consumers.

The ZKP technique used in this journal is ZK-SNARK (Zero-Knowledge Succinct Non-

Interactive Argument of Knowledge). The ZK-SNARK method is non-interactive which the prover

and verifier agree to use the shared key as a way to generate and verify proof. All operations are

performed in one call between the prover and verifier.

One of the important processes in ZK-SNARK is the process of generating publicly known

parameters (generally known as Common Reference String(CRS)) because this is very important in

the security of the protocol. If the entropy (randomness) used to generate CRS is known to an

irresponsible third party, it is feared that the party can produce fake proof.

LITERATURE REVIEW

Goldwasser, Micali, and Rackoff (Golwasser et al., 1985) introduced a zero-knowledge proof that

allows a prover to prove to a verifier that he knows information without having to reveal what the

information is. The basic concept of ZKP is that the prover could exchanges messages with the

verifier, where the prover tries to convince the verifier that the prover knows some information

without having to tell the verifier the information.

Fig 1: Zero-knowledge proofs

Source : https://appinventiv.com/blog/zero-knowledge-proof-blockchain/

https://doi.org/10.33395/sinkron.v8i3.12477

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1309

Zero-knowledge proofs represented a breakthrough in applied cryptography, as they promised to

improve security of information for individuals. Consider how you might prove a claim about

nationality. To prove that, we have to provide an evidence to support our answer, for example, a KTP

or driver's license. With identity theft becoming a critical issue, there are calls for more privacy-

protecting means of sharing sensitive information.

Zero-knowledge proofs solve this problem by eliminating the need to reveal information to prove

validity of claims (Ethereum.Org, n.d.). The zero-knowledge protocol uses the statement (called a

‘witness’) as input to generate a succinct proof of its validity. This proof provides strong guarantees

that a statement is true without exposing the information used in creating it.
A zero-knowledge protocol must satisfy the following criteria, first completeness, which means if

the input is valid, the zero-knowledge protocol always returns ‘true’, then is soundness, which means
if the input is invalid, it is theoretically impossible to fool the zero-knowledge protocol to return ‘true’,
and the last zero-knowledge, means the verifier learns nothing about a statement beyond its validity or
falsity (they have “zero knowledge” of the statement).

While revolutionary, interactive proving had limited usefulness since it required the two parties to
be available and interact repeatedly. To solve this problem, Manuel Blum, Paul Feldman, and Silvio
Micali (Blum et al. 1988) suggested the first non-interactive zero-knowledge proofs where the prover
and verifier have a shared key. This allows the prover to demonstrate their knowledge of some
information (i.e., witness) without providing the information itself.

Unlike interactive proofs, non-interactive proofs required only one round of communication

between participants (prover and verifier). The prover passes the secret information to a special

algorithm to compute a zero-knowledge proof. This proof is sent to the verifier, who checks that the

prover knows the secret information using another algorithm.

Kilian (Kilian, 1992) gave the first sublinear communication zero-knowledge argument that sends

fewer bits than the size of the statement to be proved. Micali (Micali, 2000) proposed sublinear size

arguments by letting the prover in a communication efficient argument compute the verifier’s

challenges using a cryptographic function, and as remarked in Kilian (Kilian, 1992) this leads to

sublinear size NIZK proofs when the interactive argument is public coin.

Groth, Ostrovsky and Sahai (Groth et al., 2012) introduced pairing-based NIZK proofs, yielding the

first linear size proofs based on standard assumptions. Lipmaa (Lipmaa, 2012) used an alternative

construction based on progression-free sets to reduce the size of the Common Reference String (CRS).

Groth (Groth, 2016) added a preprocessing scheme to the circuit so that the argument size is constant

and the verification time is faster than before.

These schemes above are used in the ZK-SNARK (Zero-Knowledge Succinct Non-Interactive

Argument of Knowledge) protocol. ZK-SNARK protocol has the following qualities, zero-

knowledge, which means a verifier can validate the integrity of a statement without knowing anything

else about the statement. The only knowledge the verifier has of the statement is whether it is true or

false, then succinct, which means The zero-knowledge proof is smaller than the witness and can be

verified quickly, also non-interactive, which means the prover and verifier only interact once, on

forth argument, which means he proof satisfies the ‘soundness’ requirement, so cheating is extremely

unlikely, and the last is (of) knowledge, which means the zero-knowledge proof cannot be constructed

without access to the secret information (witness). It is difficult, if not impossible, for a prover who

doesn’t have the witness to compute a valid zero-knowledge proof.

This protocol makes ZK-SNARK a good choice for authentication applications (Ethereum.Org,

n.d.), especially for payments using the public Open API. ZK-SNARK ensures that authentication is

very simple, with only one connection, and the size of witness that is sent is small and constant so that

the calculation time needed to verify is very small.

https://doi.org/10.33395/sinkron.v8i3.12477

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1310

METHOD

Based on the SNAP document from the Bank of Indonesia, the Open API communication flow is

consumers, third parties, then banks as API owners. The consumer enters personal data on a third-

party website which is then forwarded by the third party to the bank. In the process, third parties can

store important data and then use it in other processes. Therefore, consumers should not provide data

to third parties, but send data that has been encrypted and can only be verified by the bank.

To meet security requirements on the consumer side, consumers must encrypt data before entering

it into third-party applications. Data encryption is used on the web3 platform for public coins

implementation. For this reason, the data encryption process on web3 adapted to increase connection

security between customers, third parties, and banks. The protocol used in the encryption process is

ZK-SNARK because the non-interactive process that does not require many connections is very

suitable for the network architecture in SNAP.

When compared to the concepts used on the blockchain in public coins, consumers store all data in

the form of smart contracts. Then when a transaction occurs, the consumer will send special public

data where to solve the transaction certain calculations are required based on the smart contract owned

by the consumer in the network. This journal proposes a zero-knowledge proofs method similar to the

public coin architecture with slight changes to the proof calculations to adapt to the architecture

currently used by banks in Indonesia.

The implementation uses the gnark library and the Golang programming language. From the

picture above, it is known that the implementation created three APIs as simulations, namely the Ping

API, GetProof API, and VerifyProof API. API Ping is a simulation of a connection between a third

party and a bank without using ZKP verification. The getProof API is an API used by consumers to

ask banks to calculate proofs based on pre-made smart contracts. Finally, the verifyProof API is an

API used to verify proofs sent by third parties to banks.

Fig 2: Proposed architecture

https://doi.org/10.33395/sinkron.v8i3.12477

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1311

After the proposed design is implemented, the code needs testing to find out the significance of the

difference between our novel architecture and existing architecture. For this, the built-in tools from

Golang, namely benchmarks, are used. In this case, the performance of the three APIs will be

calculated within 1 second. Apart from that, benchmark results will also be calculated from three

different circuit constraints to find out how many processes occur and the resources required in 1

second of the ZK-SNARK process.

RESULT

Benchmarks are used to get the performance level of a code segment when it is called many times

and compared to other functions with the same standard. Golang has several built-in tools that usually

use for benchmarking with accurate results. To get good results, we must isolate the machine used for

benchmarking and each benchmark must have the same environment so that stable results will be

obtained for each function being measured.

 Fig 4: Benchmark code result

Fig 3: Flowchart proposed architecture`

https://doi.org/10.33395/sinkron.v8i3.12477

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1312

Table 1: Benchmark of ZKP function

Function Number of

Processes

Time per Process Byte per Process Memory per Process

Ping 2.559.588 820 ns/op 394 B/op 2 allocs/op

Get Proof 8.718 121.492 ns/op 15.978 B/op 208 allocs/op

Verify Proof 2.259.682 542,7 ns/op 298 B/op 4 allocs/op

The table above describes the allocation of time, bytes, and memory for each function that is

executed within 1 second. Consider the table above, it is found that the time difference between using

ZK-SNARK and without ZK-SNARK is not significant. The difference between the Ping function and

verify proof is insignificant, the biggest difference is in the get proof function, which is the function

used to calculate public witnesses that consumers use to verify third-party applications. This means

authentication using ZK-SNARK can be implemented in SNAP governance to add consumer data

security features.

Table 2: ZK-SNARK difference based on circuit-constraint

Circuit Constraint Number

of

Processes

Time per Process Byte per

Process

Memory per

Process

Elliptic Curve 3 926 1,2 ms/op 79 KB/op 353 allocs/op

Hash 331 40 30 ms/op 1.8 MB/op 7.475 allocs/op

edDSA 6497 3 467 ms/op 32 MB/op 203.210 allocs/op

The table above illustrates the ZK-SNARK process from the start of creating a smart contract to the

verification process in 1 second. From the table above can be seen that the calculation process by

adding data constraints, both public and secret, requires processing time which will increase along

with the number of constraints. However, the addition of time and memory allocation does not have

constant straight line because it uses groth16 (Groth, 2016) calculations where the proof calculation

process made smaller than the witness so that the verification process will take less time than when

calculating smart contracts and proofs.

DISCUSSIONS

From the benchmark results, we can see that authentication ZK-SNARK using the Golang

programming language can be implemented and does not interfere with transferring data from

consumers, to third parties, and to banks. Authentication even improves the digitization process

without harming consumers due to the fact that sensitive data can be accessed by many parties.

The get proof function needs more time to process than the verify proof function, which means ZK-

SNARK need more resource when creating proof and witness. However, it only needs 542,7 ns/op for

verifying the function. This happens because, in Web3, verification should be done immediately after

proofs are introduced, so miners can mine the blockchain and solve its proof-of-work.

Also based on Table 2, we see that the edDSA algorithm has the largest constraint that makes ZK-

SNARK need more time to process than other algorithms. It needs 467 ms/op for creating a smart

https://doi.org/10.33395/sinkron.v8i3.12477

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1313

contract until verifying its transaction. So, we proposed bank to make the smart contract and create

proofs for customers because they have great resources and could do this algorithm more efficiently.

Based on two tables above, the ZK-SNARK algorithm has shown not affect function performance

and significantly increase response time. The smart contracts contained in the ZKP process using ZK-

SNARK are also easy to implement and can use various circuit constrains depending on the level of

security desired by the user and the bank concerned.

CONCLUSION

From the research results above, several conclusions were obtained. First conclusion is ZKP with

the ZK-SNARK protocol using the gnark library in the Golang programming language does not

significantly affect the response time and performance of the function called. Then, ZKP can increase

the security of user data following the Pedoman Tata Kelola SNAP documentation, so it is

recommended to use it in the next implementation update. Finally, further research is needed to

process transactions using ZKP that require two or more parties (multi-party signs).

REFERENCES

Bank of Indonesia (n.d) Pedoman Tata Kelola SNAP. Retrieved May 01, 2023, from

https://bi.go.id/id/layanan/Standar/SNAP/Documents/SNAP_Pedoman_Tata_Kelola.pdf

Bank of Indonesia (n.d) Standar Data Spesifikasi Teknis SNAP. Retrieved May 01, 2023, from

https://apidevportal.bi.go.id/snap/docs/standar-data-spesifikasi-teknis

Bank of Indonesia (n.d) Standar Teknis Keamanan SNAP. Retrieved May 01, 2023, from

https://apidevportal.bi.go.id/snap/docs/standar-teknis-keamanan

Barreto, P. S. L. M., & Naehrig, M. (2006). Pairing-friendly elliptic curves of prime order. In B.

Preneel & S. Tavares (Eds.), Selected Areas in Cryptography (Vol. 3897, pp. 319–331). Springer

Berlin Heidelberg. https://doi.org/10.1007/11693383_22

Bin Uzayr, S. (2022a). Mastering golang: A beginner’s guide (1st ed.). CRC Press.

https://doi.org/10.1201/9781003310457

Bin Uzayr, S. (2022b). Golang: The ultimate guide (1st ed.). CRC Press.

https://doi.org/10.1201/9781003309055

Blum, M., Feldman, P., & Micali, S. (1988). Non-interactive zero-knowledge and its applications.

Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing - STOC ’88,

103–112. https://doi.org/10.1145/62212.62222

Buterik, Vitalik. (2021) An approximate introduction to how zk-SNARKs are possible. Retrieved May

06, 2023, from https://vitalik.ca/general/2021/01/26/snarks.html

Dwivedi, A. D., Singh, R., Ghosh, U., Mukkamala, R. R., Tolba, A., & Said, O. (2022). Privacy

preserving authentication system based on non-interactive zero knowledge proof suitable for

Internet of Things. Journal of Ambient Intelligence and Humanized Computing, 13(10), 4639–

4649. https://doi.org/10.1007/s12652-021-03459-4

Dymora, P., & Paszkiewicz, A. (2020). Performance analysis of selected programming languages in

the context of supporting decision-making processes for industry 4.0. Applied Sciences

(Switzerland), 10(23), 1–17. https://doi.org/10.3390/app10238521

Effendy, F., Taufik, & Adhilaksono, B. (2019). Performance Comparison of Web Backend and

Database: A Case Study of Node.JS, Golang and MySQL, Mongo DB. Recent Advances in

Computer Science and Communications, 14(6), 1955–1961.

https://doi.org/10.2174/2666255813666191219104133

El Housni, Y., & Guillevic, A. (2022). Families of snark-friendly 2-chains of elliptic curves. In O.

Dunkelman & S. Dziembowski (Eds.), Advances in Cryptology – EUROCRYPT 2022 (Vol.

13276, pp. 367–396). Springer International Publishing. https://doi.org/10.1007/978-3-031-

07085-3_13

Ethereum.Org .(n.d). Zero-knowledge proofs. Retrieved May 06, 2023, from https://ethereum.org

Gaba, G. S., Hedabou, M., Kumar, P., Braeken, A., Liyanage, M., & Alazab, M. (2022). Zero

knowledge proofs based authenticated key agreement protocol for sustainable healthcare.

Sustainable Cities and Society, 80, 103766. https://doi.org/10.1016/j.scs.2022.103766

https://doi.org/10.33395/sinkron.v8i3.12477
https://bi.go.id/id/layanan/Standar/SNAP/Documents/SNAP_Pedoman_Tata_Kelola.pdf
https://apidevportal.bi.go.id/snap/docs/standar-data-spesifikasi-teknis
https://apidevportal.bi.go.id/snap/docs/standar-teknis-keamanan
https://doi.org/10.1007/11693383_22
https://doi.org/10.1201/9781003309055
https://doi.org/10.1145/62212.62222
https://vitalik.ca/general/2021/01/26/snarks.html
https://doi.org/10.3390/app10238521
https://doi.org/10.2174/2666255813666191219104133
https://ethereum.org/

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1314

Goldwasser, S., Micali, S., & Rackoff, C. (1985). The knowledge complexity of interactive proof-

systems. Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing -

STOC ’85, 291–304. https://doi.org/10.1145/22145.22178

Gong, Y., Jin, Y., Li, Y., Liu, Z., & Zhu, Z. (2022). Analysis and comparison of the main zero-

knowledge proof scheme. In Proceedings - 2022 International Conference on Big Data,

Information and Computer Network, BDICN 2022 (pp. 366–372). Institute of Electrical and

Electronics Engineers Inc. https://doi.org/10.1109/BDICN55575.2022.00074

Groth, J. (2006). Simulation-sound nizk proofs for a practical language and constant size group

signatures. In X. Lai & K. Chen (Eds.), Advances in Cryptology – ASIACRYPT 2006 (Vol. 4284,

pp. 444–459). Springer Berlin Heidelberg. https://doi.org/10.1007/11935230_29

Groth, J. (2009). Linear algebra with sub-linear zero-knowledge arguments. In S. Halevi (Ed.),

Advances in Cryptology—CRYPTO 2009 (Vol. 5677, pp. 192–208). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-03356-8_12

Groth, J. (2016). On the size of pairing-based non-interactive arguments. In M. Fischlin & J.-S. Coron

(Eds.), Advances in Cryptology – EUROCRYPT 2016 (Vol. 9666, pp. 305–326). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-662-49896-5_11

Groth, J., Ostrovsky, R., & Sahai, A. (2012). New techniques for noninteractive zero-knowledge.

Journal of the ACM, 59(3), 1–35. https://doi.org/10.1145/2220357.2220358

Groth, J., & Sahai, A. (2012). Efficient noninteractive proof systems for bilinear groups. SIAM

Journal on Computing, 41(5), 1193–1232. https://doi.org/10.1137/080725386

Harjoseputro, Y., Albertus Ari Kristanto, & Joseph Eric Samodra. (2020). Golang and NSG

Implementation in REST API Based Third-Party Sandbox System. Jurnal RESTI (Rekayasa

Sistem Dan Teknologi Informasi), 4(4), 745–750. https://doi.org/10.29207/resti.v4i4.2218

Hunacek, M. (2023). Introduction to number theory (1st ed.). Chapman and Hall/CRC.

https://doi.org/10.1201/9781003318712

Kilian, J. (1992). A note on efficient zero-knowledge proofs and arguments (Extended abstract).

Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing -

STOC ’92, 723–732. https://doi.org/10.1145/129712.129782

Kilian, J. (1995). Improved efficient arguments. In D. Coppersmith (Ed.), Advances in Cryptology—

CRYPT0’ 95 (Vol. 963, pp. 311–324). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-

44750-4_25

Kim, J., Lee, J., & Oh, H. (2020). Simulation-extractable zk-SNARK with a single verification. IEEE

Access, 8, 156569–156581. https://doi.org/10.1109/ACCESS.2020.3019980

Konkin, A., & Zapechnikov, S. (2023). Zero knowledge proof and ZK-SNARK for private

blockchains. Journal of Computer Virology and Hacking Techniques.

https://doi.org/10.1007/s11416-023-00466-1

Kristanto, A. A., Harjoseputro, Y., & Samodra, J. E. (2020). Implementasi Golang dan New Simple

Queue pada Sistem Sandbox Pihak Ketiga Berbasis REST API. Jurnal Rekayasa Sistem Dan

Teknologi Informasi (RESTI), 4(4), 745–750.

Li, W. H., Zhang, Z. Y., Zhou, Z. B., & Deng, Y. (2022, July 1). An Overview on Succinct Non-

interactive Zero-knowledge Proofs. Journal of Cryptologic Research. Chinese Association for

Cryptologic Research. https://doi.org/10.13868/j.cnki.jcr.000525

Lipmaa, H. (2012). Progression-free sets and sublinear pairing-based non-interactive zero-knowledge

arguments. In R. Cramer (Ed.), Theory of Cryptography (Vol. 7194, pp. 169–189). Springer

Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28914-9_10

Micali, S. (2000). Computationally sound proofs. SIAM Journal on Computing, 30(4), 1253–1298.

https://doi.org/10.1137/S0097539795284959

Setty, S. (2020). Spartan: Efficient and general-purpose zksnarks without trusted setup. In D.

Micciancio & T. Ristenpart (Eds.), Advances in Cryptology – CRYPTO 2020 (Vol. 12172, pp.

704–737). Springer International Publishing. https://doi.org/10.1007/978-3-030-56877-1_25

Toyib, R., & Darnita, Y. (2020). Pengamanan Data Teks Dengan Menggunakan Algoritma Zero-

Knowledge Proof. JURNAL MEDIA INFOTAMA, 16(1). https://doi.org/10.37676/jmi.v16i1.1114

https://doi.org/10.33395/sinkron.v8i3.12477
https://doi.org/10.1109/BDICN55575.2022.00074
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.29207/resti.v4i4.2218
https://doi.org/10.1145/129712.129782
https://doi.org/10.1109/ACCESS.2020.3019980

Sinkron : Jurnal dan Penelitian Teknik Informatika

Volume 8, Number 3, Juli 2023

DOI : https://doi.org/10.33395/sinkron.v8i3.12423

e-ISSN : 2541-2019

 p-ISSN : 2541-044X

*name of corresponding author

This is an Creative Commons License This work is licensed under a Creative
Commons Attribution-NonCommercial 4.0 International License. 1315

Tyagi, S., & Kathuria, M. (2022). Role of Zero-Knowledge Proof in Blockchain Security. In 2022

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, COM-

IT-CON 2022 (pp. 738–743). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/COM-IT-CON54601.2022.9850714

Ullah, S., Zheng, J., Din, N., Hussain, M. T., Ullah, F., & Yousaf, M. (2023). Elliptic Curve

Cryptography; Applications, challenges, recent advances, and future trends: A comprehensive

survey. Computer Science Review, 47, 100530. https://doi.org/10.1016/j.cosrev.2022.100530

Wahby, R. S., Tzialla, I., Shelat, A., Thaler, J., & Walfish, M. (2018). Doubly-efficient zksnarks

without trusted setup. 2018 IEEE Symposium on Security and Privacy (SP), 926–943.

https://doi.org/10.1109/SP.2018.00060

https://doi.org/10.33395/sinkron.v8i3.12477
https://doi.org/10.1109/SP.2018.00060

