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Abstract: SNAP (Standar Nasional OPEN API Pembayaran) is an 

implementation of open banking for encouraging digital transformation in 

the banking industry. SNAP was submitted by several sub-working groups 

formed jointly by ASPI and the Bank of Indonesia. In the document 

Pedoman Tata Kelola (Bank of Indonesia, n.d.), a customer data protection 

mechanism exists between the bank, the owner of Open API, and the user 

of Open API. However, there is no data protection process carried out by 

consumers so third parties, that use the Open API of the bank, do not need 

to know the customer's data. Based on the web3 with zero-knowledge 

proofs protocol, users can store data and transmit only in encrypted form 

which can only be opened by calculating the data with a pre-agreed smart 

contract. Banks can work like a decentralized network on web3, where the 

process of calculating proof and witness is carried out by the bank. Proof 

and witness are calculated using a zero-knowledge proof protocol, making 

duplicating difficult. For this reason, we propose a new architecture using 

smart contracts between banks and customers using the ZK-SNARK 

method using gnark library in the Golang programming language. 

Therefore, there is no significant performance difference between using 

ZK-SNARK and without ZK-SNARK in the API call process. 

 

Keywords: data protection, gnark, SNAP, zero-knowledge proofs, ZK-

SNARK 

 

INTRODUCTION 

On 16 August 2021, Bank Indonesia verified a document regarding the use of an Open API for 

payments in Indonesia named SNAP (Standar Nasional OPEN API Pembayaran). This document was 

initiated by many parties who are members of a sub-working group called ASPI (Asosiasi Sistem 

Pembayaran Indonesia). The document already contains a chapter on consumer data protection and 

protection mechanisms in the event of a data leak. 

 

In addition, there are Standar Data Spesifikasi Teknis SNAP (Bank of Indonesia, n.d.) and Standar 

Teknis Keamanan (Bank of Indonesia, n.d.) documents that have been verified by Bank Indonesia and 

ASPI which discuss technically how to secure data and the API calling process, such as using public 

and private keys, using encoding authentication in each header, and the use of signatures in headers. 

The document also contains the prerequisites needed so that banks and third parties can use the Open 
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API, such as the availability of written policies, fulfillment of certification, and availability of tools to 

detect fraud. 

 

This is a commitment from ASPI members and the Bank of Indonesia to secure and protect 

consumer data from irresponsible parties. In the future, it is hoped that other industries will participate 

in creating standard-compliant Open APIs as well so that consumers have convenience in the digital 

era without having to sacrifice data security. 

 

However, consumers should be included in the data security process. Consumers should also be 

aware that data security is a crucial part of the digital era, and will increase data security from these 

consumers so that only banks and consumers know consumer data. Third parties do not need to 

acknowledge user data, such as account numbers, user account names, and bank branches. 

 

Therefore, we propose a payment system architecture using Zero Knowledge Proof (hereinafter 

referred to as ZKP) using Cryptography Smart Contracts between consumers and related banks. 

Consumers do not need to send personal data to third parties, such as account numbers, usernames, 

and card numbers. Therefore, banks still can verify consumers using proof that sent by consumers. 

 

The ZKP technique used in this journal is ZK-SNARK (Zero-Knowledge Succinct Non-

Interactive Argument of Knowledge). The ZK-SNARK method is non-interactive which the prover 

and verifier agree to use the shared key as a way to generate and verify proof. All operations are 

performed in one call between the prover and verifier. 

 

One of the important processes in ZK-SNARK is the process of generating publicly known 

parameters (generally known as Common Reference String(CRS)) because this is very important in 

the security of the protocol. If the entropy (randomness) used to generate CRS is known to an 

irresponsible third party, it is feared that the party can produce fake proof. 

 

 

LITERATURE REVIEW 

Goldwasser, Micali, and Rackoff (Golwasser et al., 1985) introduced a zero-knowledge proof that 

allows a prover to prove to a verifier that he knows information without having to reveal what the 

information is. The basic concept of ZKP is that the prover could exchanges messages with the 

verifier, where the prover tries to convince the verifier that the prover knows some information 

without having to tell the verifier the information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Zero-knowledge proofs 

Source : https://appinventiv.com/blog/zero-knowledge-proof-blockchain/ 
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Zero-knowledge proofs represented a breakthrough in applied cryptography, as they promised to 

improve security of information for individuals. Consider how you might prove a claim about 

nationality. To prove that, we have to provide an evidence to support our answer, for example, a KTP 

or driver's license. With identity theft becoming a critical issue, there are calls for more privacy-

protecting means of sharing sensitive information. 

Zero-knowledge proofs solve this problem by eliminating the need to reveal information to prove 

validity of claims (Ethereum.Org, n.d.). The zero-knowledge protocol uses the statement (called a 

‘witness’) as input to generate a succinct proof of its validity. This proof provides strong guarantees 

that a statement is true without exposing the information used in creating it. 
A zero-knowledge protocol must satisfy the following criteria, first completeness, which means if 

the input is valid, the zero-knowledge protocol always returns ‘true’, then is soundness, which means 
if the input is invalid, it is theoretically impossible to fool the zero-knowledge protocol to return ‘true’, 
and the last zero-knowledge, means the verifier learns nothing about a statement beyond its validity or 
falsity (they have “zero knowledge” of the statement).  

While revolutionary, interactive proving had limited usefulness since it required the two parties to 
be available and interact repeatedly. To solve this problem, Manuel Blum, Paul Feldman, and Silvio 
Micali (Blum et al. 1988) suggested the first non-interactive zero-knowledge proofs where the prover 
and verifier have a shared key. This allows the prover to demonstrate their knowledge of some 
information (i.e., witness) without providing the information itself. 

Unlike interactive proofs, non-interactive proofs required only one round of communication 

between participants (prover and verifier). The prover passes the secret information to a special 

algorithm to compute a zero-knowledge proof. This proof is sent to the verifier, who checks that the 

prover knows the secret information using another algorithm. 

 

Kilian (Kilian, 1992) gave the first sublinear communication zero-knowledge argument that sends 

fewer bits than the size of the statement to be proved. Micali (Micali, 2000) proposed sublinear size 

arguments by letting the prover in a communication efficient argument compute the verifier’s 

challenges using a cryptographic function, and as remarked in Kilian (Kilian, 1992) this leads to 

sublinear size NIZK proofs when the interactive argument is public coin. 

 

Groth, Ostrovsky and Sahai (Groth et al., 2012) introduced pairing-based NIZK proofs, yielding the 

first linear size proofs based on standard assumptions. Lipmaa (Lipmaa, 2012) used an alternative 

construction based on progression-free sets to reduce the size of the Common Reference String (CRS). 

Groth (Groth, 2016) added a preprocessing scheme to the circuit so that the argument size is constant 

and the verification time is faster than before.  

 

These schemes above are used in the ZK-SNARK (Zero-Knowledge Succinct Non-Interactive 

Argument of Knowledge) protocol. ZK-SNARK protocol has the following qualities, zero-

knowledge, which means a verifier can validate the integrity of a statement without knowing anything 

else about the statement. The only knowledge the verifier has of the statement is whether it is true or 

false, then succinct, which means The zero-knowledge proof is smaller than the witness and can be 

verified quickly, also non-interactive, which means  the prover and verifier only interact once, on 

forth argument, which means he proof satisfies the ‘soundness’ requirement, so cheating is extremely 

unlikely, and the last is (of) knowledge, which means the zero-knowledge proof cannot be constructed 

without access to the secret information (witness). It is difficult, if not impossible, for a prover who 

doesn’t have the witness to compute a valid zero-knowledge proof. 

 

This protocol makes ZK-SNARK a good choice for authentication applications (Ethereum.Org, 

n.d.), especially for payments using the public Open API. ZK-SNARK ensures that authentication is 

very simple, with only one connection, and the size of witness that is sent is small and constant so that 

the calculation time needed to verify is very small. 
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METHOD 

Based on the SNAP document from the Bank of Indonesia, the Open API communication flow is 

consumers, third parties, then banks as API owners. The consumer enters personal data on a third-

party website which is then forwarded by the third party to the bank. In the process, third parties can 

store important data and then use it in other processes. Therefore, consumers should not provide data 

to third parties, but send data that has been encrypted and can only be verified by the bank. 

 

To meet security requirements on the consumer side, consumers must encrypt data before entering 

it into third-party applications. Data encryption is used on the web3 platform for public coins 

implementation. For this reason, the data encryption process on web3 adapted to increase connection 

security between customers, third parties, and banks. The protocol used in the encryption process is 

ZK-SNARK because the non-interactive process that does not require many connections is very 

suitable for the network architecture in SNAP. 

 

When compared to the concepts used on the blockchain in public coins, consumers store all data in 

the form of smart contracts. Then when a transaction occurs, the consumer will send special public 

data where to solve the transaction certain calculations are required based on the smart contract owned 

by the consumer in the network. This journal proposes a zero-knowledge proofs method similar to the 

public coin architecture with slight changes to the proof calculations to adapt to the architecture 

currently used by banks in Indonesia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The implementation uses the gnark library and the Golang programming language. From the 

picture above, it is known that the implementation created three APIs as simulations, namely the Ping 

API, GetProof API, and VerifyProof API. API Ping is a simulation of a connection between a third 

party and a bank without using ZKP verification. The getProof API is an API used by consumers to 

ask banks to calculate proofs based on pre-made smart contracts. Finally, the verifyProof API is an 

API used to verify proofs sent by third parties to banks. 

 

 

 

Fig 2: Proposed architecture 
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After the proposed design is implemented, the code needs testing to find out the significance of the 

difference between our novel architecture and existing architecture. For this, the built-in tools from 

Golang, namely benchmarks, are used. In this case, the performance of the three APIs will be 

calculated within 1 second. Apart from that, benchmark results will also be calculated from three 

different circuit constraints to find out how many processes occur and the resources required in 1 

second of the ZK-SNARK process. 

 

RESULT 

Benchmarks are used to get the performance level of a code segment when it is called many times 

and compared to other functions with the same standard. Golang has several built-in tools that usually 

use for benchmarking with accurate results. To get good results, we must isolate the machine used for 

benchmarking and each benchmark must have the same environment so that stable results will be 

obtained for each function being measured. 

 

 

 

 

 

 

 

 Fig 4: Benchmark code result 

Fig 3: Flowchart proposed architecture` 
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Table 1: Benchmark of ZKP function 

Function Number of 

Processes 

Time per Process Byte per Process Memory per Process 

Ping 2.559.588 820 ns/op 394 B/op 2 allocs/op 

Get Proof 8.718 121.492 ns/op 15.978 B/op 208 allocs/op 

Verify Proof 2.259.682 542,7 ns/op 298 B/op 4 allocs/op 

 

The table above describes the allocation of time, bytes, and memory for each function that is 

executed within 1 second. Consider the table above, it is found that the time difference between using 

ZK-SNARK and without ZK-SNARK is not significant. The difference between the Ping function and 

verify proof is insignificant, the biggest difference is in the get proof function, which is the function 

used to calculate public witnesses that consumers use to verify third-party applications. This means 

authentication using ZK-SNARK can be implemented in SNAP governance to add consumer data 

security features. 
 

Table 2: ZK-SNARK difference based on circuit-constraint 

Circuit Constraint Number 

of 

Processes 

Time per Process Byte per 

Process 

Memory per 

Process 

Elliptic Curve 3 926 1,2 ms/op 79 KB/op 353 allocs/op 

Hash 331 40 30 ms/op 1.8 MB/op 7.475 allocs/op 

edDSA 6497 3 467 ms/op 32 MB/op 203.210 allocs/op 

 

The table above illustrates the ZK-SNARK process from the start of creating a smart contract to the 

verification process in 1 second. From the table above can be seen that the calculation process by 

adding data constraints, both public and secret, requires processing time which will increase along 

with the number of constraints. However, the addition of time and memory allocation does not have 

constant straight line because it uses groth16 (Groth, 2016) calculations where the proof calculation 

process made smaller than the witness so that the verification process will take less time than when 

calculating smart contracts and proofs. 
 

DISCUSSIONS 

From the benchmark results, we can see that authentication ZK-SNARK using the Golang 

programming language can be implemented and does not interfere with transferring data from 

consumers, to third parties, and to banks. Authentication even improves the digitization process 

without harming consumers due to the fact that sensitive data can be accessed by many parties. 

The get proof function needs more time to process than the verify proof function, which means ZK-

SNARK need more resource when creating proof and witness. However, it only needs 542,7 ns/op for 

verifying the function. This happens because, in Web3, verification should be done immediately after 

proofs are introduced, so miners can mine the blockchain and solve its proof-of-work. 

Also based on Table 2, we see that the edDSA algorithm has the largest constraint that makes ZK-

SNARK need more time to process than other algorithms. It needs 467 ms/op for creating a smart 

https://doi.org/10.33395/sinkron.v8i3.12477
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contract until verifying its transaction. So, we proposed bank to make the smart contract and create 

proofs for customers because they have great resources and could do this algorithm more efficiently. 

Based on two tables above, the ZK-SNARK algorithm has shown not affect function performance 

and significantly increase response time. The smart contracts contained in the ZKP process using ZK-

SNARK are also easy to implement and can use various circuit constrains depending on the level of 

security desired by the user and the bank concerned. 

 

CONCLUSION 

From the research results above, several conclusions were obtained. First conclusion is ZKP with 

the ZK-SNARK protocol using the gnark library in the Golang programming language does not 

significantly affect the response time and performance of the function called. Then, ZKP can increase 

the security of user data following the Pedoman Tata Kelola SNAP documentation, so it is 

recommended to use it in the next implementation update. Finally, further research is needed to 

process transactions using ZKP that require two or more parties (multi-party signs). 
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